Tenascin-C expression and its associated pathway in BMSCs following co-culture with mechanically stretched ligament fibroblasts
نویسندگان
چکیده
The occurrence of pelvic organ prolapse (POP) is closely associated with alterations in the extracellular matrix proteins of the supporting ligament. Bone marrow mesenchymal stem cells (BMSCs) have the potential to differentiate into a variety of cell types, including osteoblasts, chondroblasts and adipocytes. Therefore, BMSCs have the potential to improve the clinical outcomes of POP. Tenascin‑C is a large glycoprotein that is present in the ECM and is involved in morphogenetic movements, and tissue patterning and repair. The aim of the present study was to investigate the effect of mechanical stretching on tenascin‑C expression during the differentiation of BMSCs induced by pelvic ligament fibroblasts. BMSCs were isolated from 7‑day‑old Sprague Dawley rats. Fibroblasts were obtained from rat pelvic ligaments and, at the fourth passage, were subjected to 10% deformation with 1 Hz, periodic one‑way mechanical stretch stimulation, followed by co‑culture with BMSCs. The co‑culture with stretched fibroblasts increased tenascin‑C and transforming growth factor (TGF)‑β expression levels, compared with groups without mechanical stimulation. Neutralizing anti‑TGF‑β1 antibodies, and inhibitors of TGF‑β receptor, mitogen‑activated protein kinase (MAPK) kinase and MAPK, decreased tenascin‑C expression levels induced by TGF‑β and mechanical stretching. The results of the present study suggested that the regulation of tenascin‑C expression levels in BMSCs co‑cultured with mechanically stretched pelvic ligament fibroblasts is mediated via the soluble growth factor TGF‑β and the MAPK signaling pathway. In addition, these results indicated that in an indirect co‑culture system, pelvic ligament fibroblasts with mechanical stretch stimulation may promote the synthesis of tenascin‑C and BMSC differentiation into pelvic ligament fibroblasts.
منابع مشابه
Mechanical Loading Improves Tendon-Bone Healing in a Rabbit Anterior Cruciate Ligament Reconstruction Model by Promoting Proliferation and Matrix Formation of Mesenchymal Stem Cells and Tendon Cells.
BACKGROUND/AIMS This study investigated the effect of mechanical stress on tendon-bone healing in a rabbit anterior cruciate ligament (ACL) reconstruction model as well as cell proliferation and matrix formation in co-culture of bone-marrow mesenchymal stem cells (BMSCs) and tendon cells (TCs). METHODS The effect of continuous passive motion (CPM) therapy on tendon-bone healing in a rabbit AC...
متن کاملBone Marrow Stem Cells Anti-liver Fibrosis Potency: Inhibition of Hepatic Stellate Cells Activity and Extracellular Matrix Deposition
Transplantation of bone marrow derived stem cells (BMSCs) has been reported inhibits liver fibrosis. Several in vitro studies by co-culturing BMSCs and hepatic stellate cells (HSCs) indirectly or directly in 2D models showed inhibition of HSC as the key player in liver fibrosis. In this study, we investigated direct effect of BMSCs on HSCs by co-culturing BMSCs and HSCs in 3D model as it repres...
متن کاملEffects of Treatment with Bone Morphogenetic Protein 4 and Co-culture on Expression of Piwil2 Gene in Mouse Differentiated Embryonic Stem Cells
Background Specific growth factors and feeder layers seem to have important roles in in vitro embryonic stem cells (ESCs) differentiation. In this study,the effects of bone morphogenetic protein 4 (BMP4) and mouse embryonic fibroblasts (MEFs) co-culture system on germ cell differentiation from mouse ESCs were studied. MaterialsAndMethods Cell suspension was prepared from one-day-old embryoid bo...
متن کاملSimvastatin combined with bone marrow mesenchymal stromal cells (BMSCs) improve burn wound healing by ameliorating angiogenesis through SDF-1α/CXCR4 pathway
Objective(s): Chemokines are wound mediators that promote angiogenesis during wound healing. We hypothesized that Simvastatin in combination with the bone marrow mesenchymal stromal cells (BMSCs) improve burn wound healing by ameliorating angiogenesis via SDF-1α/CXCR4 pathway.Materials and Methods: Under general anesthesia, deep partial-...
متن کاملMechanical stretch-induced changes in cell morphology and mRNA expression of tendon/ligament-associated genes in rat bone-marrow mesenchymal stem cells.
It has been demonstrated that mechanical stimulation plays a vital role in regulating the proliferation and differentiation of stem cells. However, little is known about the effects of mechanical stress on tendon/ligament development from mesenchymal stem cells (MSCs). Here, using a custom-made cell-stretching device, we studied the effects of mechanical stretching on the cell morphology and mR...
متن کامل